Login / Signup

Isolation and reactivity of an elusive diazoalkene.

P W AntoniC GolzJulian J HolsteinDimitrios A PantazisMax M Hansmann
Published in: Nature chemistry (2021)
Most functional groups, especially those consisting of the abundant elements of organic matter-carbon, nitrogen and oxygen-have been extensively studied and only very few remain speculative due to their high intrinsic reactivity. In contrast to the well-explored chemistry of diazoalkanes (R2C=N2), diazoalkenes (R2C=C=N2) have been postulated in several organic transformations, but remain elusive long-sought intermediates. Here, we present a room-temperature stable diazoalkene, utilizing a dinitrogen transfer from nitrous oxide. This functional group shows dual-site nucleophilicity (C and N atoms) and features a bent C-C-N entity (124°) and a long N-N bond together with a remarkable low infrared absorption (1,944 cm-1). Substitution of N2 by an isocyanide leads to a vinylidene ketenimine. Furthermore, photochemically triggered loss of dinitrogen might proceed through a transient triplet vinylidene. We anticipate the existence of a stable diazoalkene functional group to pave an exciting avenue into the chemistry of low-valent carbon and unsaturated carbenes.
Keyphrases
  • room temperature
  • organic matter
  • magnetic resonance imaging
  • contrast enhanced