Login / Signup

Selenium Functionalized Metal-Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury.

Jianping YangWenbing ZhuWenqi QuZequn YangJun WangMingguang ZhangHailong Li
Published in: Environmental science & technology (2019)
Abatement of mercury emission from coal-fired power plants remains a serious task for public health and environmental societies. Selenium functionalized metal-organic framework MIL-101 (Se/MIL-101) was prepared for mercury removal from power plants. The Se/MIL-101 exhibited a remarkable mercury adsorption capacity of 148.19 mg·g-1, which was about 154 to 705 times larger than that of commercial activated carbons exclusively applied for mercury removal from power plants. The initial mercury adsorption rate for Se/MIL-101 reached up to 44.8 μg·g-1·min-1, which was 89- to 1659-fold higher than those of mercury sorbents reported in the literature. The Se/MIL-101 maintained an excellent mercury adsorption stability under simulated flue gas atmosphere containing SO2, NO, and H2O. Gaseous elemental mercury (Hg0) converted on the Se/MIL-101 to stable and water-insoluble mercury selenide (HgSe), which guaranteed a minimum re-emission even sequestration of mercury. Moreover, the mercury-laden Se/MIL-101 could also immobilize mercury in gypsum and efficiently capture mercury ions from desulfurization effluent to an undetectable level (<0.0035 μg·L-1). With these advantages, Se/MIL-101 appears to be a promising material for efficient and permanent sequestration of mercury from power plants.
Keyphrases
  • metal organic framework
  • solid phase extraction
  • public health
  • heavy metals
  • simultaneous determination