Intelligent De Novo Design of Novel Antimicrobial Peptides against Antibiotic-Resistant Bacteria Strains.
Tzu-Tang LinLi-Yen YangChung-Yen LinChing-Tien WangChia-Wen LaiChi-Fong KoYang-Hsin ShihShu-Hwa ChenPublished in: International journal of molecular sciences (2023)
Because of the growing number of clinical antibiotic resistance cases in recent years, novel antimicrobial peptides (AMPs) may be ideal for next-generation antibiotics. This study trained a Wasserstein generative adversarial network with gradient penalty (WGAN-GP) based on known AMPs to generate novel AMP candidates. The quality of the GAN-designed peptides was evaluated in silico, and eight of them, named GAN-pep 1-8, were selected by an AMP Artificial Intelligence (AI) classifier and synthesized for further experiments. Disc diffusion testing and minimum inhibitory concentration (MIC) determinations were used to identify the antibacterial effects of the synthesized GAN-designed peptides. Seven of the eight synthesized GAN-designed peptides displayed antibacterial activity. Additionally, GAN-pep 3 and GAN-pep 8 presented a broad spectrum of antibacterial effects and were effective against antibiotic-resistant bacteria strains, such as methicillin-resistant Staphylococcus aureus and carbapenem-resistant Pseudomonas aeruginosa . GAN-pep 3, the most promising GAN-designed peptide candidate, had low MICs against all the tested bacteria. In brief, our approach shows an efficient way to discover AMPs effective against general and antibiotic-resistant bacteria strains. In addition, such a strategy also allows other novel functional peptides to be quickly designed, identified, and synthesized for validation on the wet bench.
Keyphrases
- light emitting
- artificial intelligence
- methicillin resistant staphylococcus aureus
- pseudomonas aeruginosa
- escherichia coli
- machine learning
- big data
- cystic fibrosis
- protein kinase
- staphylococcus aureus
- deep learning
- body composition
- quality improvement
- molecular docking
- silver nanoparticles
- multidrug resistant
- biofilm formation
- drug resistant
- oxide nanoparticles