Login / Signup

The second-order coherence analysis of number state propagation through dispersive non-Hermitian multilayered structures.

Elnaz PilehvarEhsan AmooghorbanMohammad Kazem Moravvej-Farshi
Published in: Scientific reports (2024)
To examine the second-order coherence of light propagation of quantum states in arbitrary directions through dispersive non-Hermitian optical media, we considered two sets of non-Hermitian periodic structures that consist of gain/loss unit cells. We show that each batch can satisfy the parity-time symmetry conditions at a distinct frequency. We then varied the gain/loss strength in the stable electromagnetic regime to evaluate the transmittance of N-photon number states through each structure. The results show both sets preserve their antibunching characteristics under specific incident light conditions. Furthermore, s(p)-polarized light exhibits higher (lower) second-order coherence at larger incident angles. In addition, the antibunching features of the transmitted states degrade with an increase in the number of unit cells in multilayered structures for both polarizations.
Keyphrases
  • induced apoptosis
  • high resolution
  • cell cycle arrest
  • cardiovascular disease
  • ionic liquid
  • solid phase extraction
  • gas chromatography mass spectrometry
  • endoplasmic reticulum stress
  • high speed