Login / Signup

A smartphone-based platform for point-of-use determination of alkaline phosphatase as an indicator of water eutrophication.

Xinrui YouChunyu HuangYuxin LuoGuoyue ShiTianshu ZhouJingjing Deng
Published in: Mikrochimica acta (2020)
A smartphone-based detection platform for the determination of alkaline phosphatase (ALP) is described. The method is based on the rational design of the stimulus-response of 7-methoxycoumarin-3-carboxylic acid (7-MC-3-COOH)-functionalized Eu-AMP infinite coordination polymer (ICP) nanoparticles. The blue fluorescence of 7-MC-3-COOH at 403 nm was suppressed, while the red fluorescence of Eu3+ at 615 nm was sensitized after the formation of 7-MC-3-COOH@Eu-AMP ICP. Upon exposure to ALP, the dephosphorylation of AMP resulted in the destruction of 7-MC-3-COOH@Eu-AMP ICP, and thereby, the blue fluorescence of 7-MC-3-COOH recovered; in the meantime, the sensitized red fluorescence was quenched. With the fluorescence intensity ratio F615/F430 as the signal readout, ALP can be detected within a concentration range 0.001 to 0.15 U mL-1, and the limit of detection (LOD) was 0.00035 U mL-1. Moreover, fluorescence color changes from red to blue could also be recognized by a portable device with the smartphone as a signal reader, and direct point-of-use testing (POUT) for ALP within a concentration range 0.005 to 0.7 U mL-1 could be realized, with LOD of 0.0015 U mL-1. Endowed with high sensitivity and superior reliability, the assay enabled direct monitoring of P-related water eutrophication in a freshwater lake with ALP as an indicator. Graphical abstract A smartphone-based platform for point-of-use determination of alkaline phosphatase.
Keyphrases
  • single molecule
  • energy transfer
  • protein kinase
  • high throughput
  • solid phase extraction
  • photodynamic therapy
  • high intensity
  • label free
  • simultaneous determination