Login / Signup

Genotyping KIF1C (c.608G>A) Mutant Reveals a Wide Distribution of Progressive Ataxia in German Charolais Cattle.

Felix Manuel BischofbergerSina ReinartzOttmar Distl
Published in: Animals : an open access journal from MDPI (2024)
Bovine progressive ataxia in Charolais cattle was first described in the 1970s; then, cases were reported in Charolais worldwide. A homozygous loss-of-function mutation within the KIF1C gene (c.608G>A) was found to be responsible for this neurodegenerative disease. The aim of this study was to determine whether the mutated KIF1C allele segregates in the German Charolais population and whether the estimated breeding values for growth and muscle conformation are associated with the mutated genotypes. Genetic test results of the KIF1C:c.608G>A variant were available for 1315 Charolais cattle from 35 herds located in Germany. In addition, 324 samples from eight other beef cattle breeds were tested for the mutated KIF1C allele. We were able to demonstrate that the KIF1C mutation is common, with a frequency of 11.75% in the German Charolais population. All but two of the eight (2/8 = 25%) homozygous mutated individuals showed clinical signs consistent with progressive ataxia. The estimated breeding values of muscle conformation in 200- and 365-day-old animals indicated a significant superiority for homozygous mutated animals when compared either with heterozygous or homozygous wild-type genotypes; this was also the case for heterozygous genotypes in comparison with homozygous wild-type genotypes. For the estimated breeding values of daily weight gain in 200- and 365-day-old animals, the significant differences between homozygous mutated and heterozygous or wild-type genotypes were in favour of the homozygous mutant animals. There were no differences in the estimated maternal breeding values among all three KIF1C genotypes. For the first time, two German Angus cattle carrying the KIF1C mutation heterozygous were detected. The breeders' survey highlighted that increased awareness would facilitate increased conviction among breeders of the need for genetic testing in order to eliminate the lethal KIF1C allele.
Keyphrases
  • wild type
  • early onset
  • weight gain
  • multiple sclerosis
  • genome wide
  • birth weight
  • body mass index
  • skeletal muscle
  • gene expression
  • high throughput
  • molecular dynamics simulations
  • copy number
  • dna methylation
  • weight loss