Analyses of Wheat Yellow Rust Populations Reveal Sexual Recombination and Seasonal Migration Pattern of Puccinia striiformis f. sp. tritici in Gangu, Northwestern China.
Miaomiao HuangTaiguo LiuShiqin CaoJonathan E YuenJiasui ZhanQiuzhen JiaLi GaoBo LiuWanquan ChenAnna BerlinPublished in: Phytopathology (2021)
Puccinia striiformis f. sp. tritici is the causal agent of wheat yellow rust with records of regular and severe epidemics in China. This study explored the population dynamics of the yellow rust pathogen in Gangu, northwestern China. In Gangu, the Weihe River runs from west to east and divides Gangu into three regions: North and South mountain, with the valley in between. To study the genetic structure of the pathogen in local populations, samples were collected over 3 years from the three regions at different altitudes both within and between the wheat cropping seasons. A total of 811 P. striiformis f. sp. tritici isolates were successfully genotyped using 16 simple sequence repeat markers. The results suggest that P. striiformis f. sp. tritici can survive year-round in Gangu. The P. striiformis f. sp. tritici populations migrated among the regions, and the migration pattern was not related to altitude. The oversummering populations in the North and South mountain regions were genetically different from each other; and the P. striiformis f. sp. tritici populations collected from the lower altitude in the valley had no relationship with any of the populations collected in the spring or fall, indicating that they too have a different origin. Signatures of random mating were found in the populations collected in both North and South mountain regions, but not in the valley populations.