Login / Signup

Thiosulfate oxidation in sulfur-reducing Shewanella oneidensis and its unexpected influences on the cytochrome c content.

Qingzi YuWeining SunHaichun Gao
Published in: Environmental microbiology (2021)
Thiosulfate, an important form of sulfur compounds, can serve as both electron donor and acceptor in various microorganisms. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, thiosulfate reduction has long been recognized but whether it can catalyse thiosulfate oxidation remains elusive. In this study, we discovered that S. oneidensis is capable of thiosulfate oxidation, a process specifically catalysed by two periplasmic cytochrome c (cyt c) proteins, TsdA and TsdB, which act as the catalytic subunit and the electron transfer subunit respectively. In the presence of oxygen, oxidation of thiosulfate has priority over reduction. Intriguingly, thiosulfate oxidation negatively regulates the cyt c content in S. oneidensis cells, largely by reducing intracellular levels of cAMP, which as the cofactor modulates activity of global regulator Crp required for transcription of many cyt c genes. This unexpected finding provides an additional dimension to interplays between the respiration regulator and the respiratory pathways in S. oneidensis. Moreover, the data presented here identified S. oneidensis as the first bacterium known to date owning both functional thiosulfate reductase and dehydrogenase, and importantly, genomics analyses suggested that the number of bacterial species possessing this feature is rather limited.
Keyphrases
  • electron transfer
  • hydrogen peroxide
  • transcription factor
  • induced apoptosis
  • machine learning
  • deep learning
  • electronic health record
  • genome wide
  • cell death
  • genetic diversity