Login / Signup

Technical note: multi-alleles at the DYS385ab locus with high frequency in a Han Chinese population from southwestern China.

Jiewen FuShangyi FuShiqiang YinJingliang ChengXiaoyan LiuZeming JinTao HeJunjiang Fu
Published in: International journal of legal medicine (2021)
Y-chromosome short tandem repeat (Y-STR) markers have been widely used in forensic applications and usually show monoallelic or diallelic genotypic patterns at certain double-copied loci. In this study, we have found 13 samples among 703 males with multi-alleles at the DYS385ab locus, including one with five mutant alleles, nine with four, and three with three. The frequency of abnormal DYS385ab genotypes was 1.85% (13/703), which is very high in the Han Chinese population. The percentage of samples with diallelic patterns at DYS385ab was higher than that of monoallelic patterns (80.23% vs. 17.92%). Additionally, the percentage of samples with tetra-allelic patterns at DYS385ab was higher than that of tri-allelic patterns (1.28% vs. 0.43%), suggesting that there are possibly two copies with duplicated events happening frequently on the Y chromosome. Interestingly, the peak height of allele 13 was two to three-folds higher than that of other alleles. The allele 18 peak height was also two-fold higher than others, which could potentially be explained by a duplication event mechanism. We also found that tri-allelic genotypes for alleles 13, 17, and 20, tetra-allelic genotypes for alleles 13, 14, 19, and 20, and tetra-allelic genotypes for alleles 12, 13, 19 and 21 were more common than others. Furthermore, all 13 samples had multi-alleles containing allele 13, implying a founder effect in this particular Chinese-specific ethnic group. Taken together, this study provides new information for this population and will be useful for paternal lineage identification, kinship analysis, and family relationship reconstruction using Y-STR forensic DNA analysis methods.
Keyphrases
  • high frequency
  • body mass index
  • healthcare
  • gene expression
  • genome wide
  • circulating tumor cells