Login / Signup

Tailoring Magnetoelectric Coupling in BiFeO3 /La0.7 Sr0.3 MnO3 Heterostructure through the Interface Engineering.

Di YiPu YuYi-Chun ChenHsin-Hua LeeQing HeYing-Hao ChuRamamoorthy Ramesh
Published in: Advanced materials (Deerfield Beach, Fla.) (2019)
Electric field control of magnetism ultimately opens up the possibility of reducing energy consumption of memory and logic devices. Electric control of magnetization and exchange bias are demonstrated in all-oxide heterostructures of BiFeO3 (BFO) and La0.7 Sr0.3 MnO3 (LSMO). However, the role of the polar heterointerface on magnetoelectric (ME) coupling is not fully explored. Here, the ME coupling in BFO/LSMO heterostructures with two types of interfaces, achieved by exploiting the interface engineering at the atomic scale, is investigated. It is shown that both magnetization and exchange bias are reversibly controlled by switching the ferroelectric polarization of BFO. Intriguingly, distinctly different modulation behaviors that depend on the interfacial atomic sequence are observed. These results provide new insights into the underlying physics of ME coupling in the model system. This study highlights that designing interface at the atomic scale is of general importance for functional spintronic devices.
Keyphrases
  • room temperature
  • ionic liquid
  • molecular dynamics simulations
  • mass spectrometry
  • amino acid