Login / Signup

Tetramerization of GH2 β-Glucuronidases is Essential for Catalyzing the Hydrolysis of the Large Substrate Glycyrrhizin.

Qibin WangDingyuan LuHu LiuChun Li
Published in: Journal of agricultural and food chemistry (2022)
In this study, structural analysis was employed to identify three hotspot residues that contribute most to the tetramer formation of a glycoside hydrolase family 2 (GH2) β-glucuronidase (GUS) from Aspergillus oryzae Li-3. Single-point mutation at these sites completely disrupted the tetramer structure and abolished the glycyrrhizin (GL)-hydrolyzing activity. Then, the W522A dimer was refactored into a tetramer by disulfide bonding, and partial GL activity was restored. Further saturated mutation showed a strong correlation between the GL activity of the mutants and their tetramer ratios. Molecular simulations were employed to illustrate the critical role of the tetramer interface in maintaining a functional active-site structure. The three highly conserved tetramer-forming residues were finally applied to two other GH2 GUSs for tetramer dissociation and demonstrated the significance of the homotetramerization for GL-hydrolyzing activity of GH2 GUSs. This study lays foundation for engineering GL-hydrolyzing GUSs at the quaternary structure level for function regulations.
Keyphrases
  • growth hormone
  • single molecule
  • wild type