Nitric Oxide Pre-Treatment Advances Seed Germination and Alleviates Copper-Induced Photosynthetic Inhibition in Indian Mustard.
Bilal A RatherIqbal R MirAsim MasoodNaser A AnjumNafees A KhanPublished in: Plants (Basel, Switzerland) (2020)
This investigation tested the efficiency of nitric oxide (NO) in alleviation of Cu-induced adverse impacts on seed germination and photosynthesis in Indian mustard (Brassica juncea L.). Pre-treatment of B. juncea seeds with sodium nitroprusside (SNP; NO donor) significantly improved the seed germination rate and also alleviated Cu-accrued oxidative stress. However, in the absence of NO, Cu caused a higher reduction in seed germination rate. The presence of NO strengthened the antioxidant defense system (glutathione reductase, ascorbate peroxidase, and superoxide dismutase) and thereby sustained the lower lipid peroxidation, reduced H2O2 content, and thiobarbituric acid reactive substances in Cu-exposed seeds. NO pre-treated seeds also retained a higher amylase activity and exhibited an improved seed germination rate. This effect of NO under Cu stress was also seen in plants originated from the NO pre-treated seeds, where the role of NO pre-treatment was reflected in the improved photosynthetic potential of B. juncea. Overall, NO pre-treatment not only improved the germination rate in seeds but also carried its effects in the grown seedlings evidenced as improved photosynthesis and growth. Potential mechanisms involved in the action of NO pre-treatment included NO-mediated significant strengthening of the antioxidant defense system and decreases in Cu-caused oxidative stress parameters.