Mouse CCL9 Chemokine Acts as Tumor Suppressor in a Murine Model of Colon Cancer.
Marzena ŁazarczykEwa KurzejamskaMichel-Edwar MickaelPiotr PoznanskiDominik S SkibaMariusz SacharczukZbigniew GaciongPiotr ReligaPublished in: Current issues in molecular biology (2023)
Colorectal cancer is the third most frequently diagnosed cancer in the world. Despite extensive studies and apparent progress in modern strategies for disease control, the treatment options are still not sufficient and effective, mostly due to frequently encountered resistance to immunotherapy of colon cancer patients in common clinical practice. In our study, we aimed to uncover the CCL9 chemokine action employing the murine model of colon cancer to seek new, potential molecular targets that could be promising in the development of colon cancer therapy. Mouse CT26.CL25 colon cancer cell line was used for introducing lentivirus-mediated CCL9 overexpression. The blank control cell line contained an empty vector, while the cell line marked as CCL9+ carried the CCL9-overexpressing vector. Next, cancer cells with empty vector (control) or CCL9-overexpressing cells were injected subcutaneously, and the growing tumors were measured within 2 weeks. Surprisingly, CCL9 contributed to a decline in tumor growth in vivo but had no effect on CT26.CL25 cell proliferation or migration in vitro. Microarray analysis of the collected tumor tissues revealed upregulation of the immune system-related genes in the CCL9 group. Obtained results suggest that CCL9 reveals its anti-proliferative functions by interplay with host immune cells and mediators that were absent in the isolated, in vitro system. Under specific study conditions, we determined unknown features of the murine CCL9 that have so far bee reported to be predominantly pro-oncogenic.
Keyphrases
- liver fibrosis
- liver injury
- cell proliferation
- drug induced
- cancer therapy
- magnetic resonance imaging
- gene expression
- induced apoptosis
- signaling pathway
- squamous cell carcinoma
- transcription factor
- image quality
- clinical practice
- oxidative stress
- magnetic resonance
- long non coding rna
- positron emission tomography
- risk assessment
- lymph node metastasis
- cell cycle
- young adults
- human health