Login / Signup

Task and stimulus coding in the multiple-demand network.

Sneha ShashidharaMoataz AssemMatthew F GlasserJohn Duncan
Published in: Cerebral cortex (New York, N.Y. : 1991) (2024)
In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.
Keyphrases