Login / Signup

Modelling the growth reaction pathways of zincone ALD/MLD hybrid thin films: a DFT study.

Mario MäkinenTimo WeckmanKari Laasonen
Published in: Physical chemistry chemical physics : PCCP (2024)
ALD/MLD hybrid thin films can be fabricated by combining atomic layer deposition (ALD) and molecular layer deposition (MLD). Even though this deposition method has been extensively used experimentally, the computational work required to acquire the reaction paths during the thin film deposition process is still in dire demand. We investigated hybrid thin films consisting of diethyl zinc and either 4-aminophenol or hydroquinone using both gas-phase and surface reactions to gain extensive knowledge of the complex phenomena occurring during the process of hybrid thin film deposition. We used density functional theory (DFT) to obtain the activation energies of these kinetic-dependent deposition processes. Different processes of ethyl ligand removal as ethane were discovered, and we found that the hydroxyl group of 4-aminophenol was more reactive than the amino group in the migration of hydrogen to an ethyl ligand within a complicated branching reaction chain.
Keyphrases
  • density functional theory
  • molecular dynamics
  • healthcare
  • multidrug resistant
  • molecular docking
  • ionic liquid
  • mass spectrometry
  • high resolution
  • molecular dynamics simulations
  • high speed