Login / Signup

Mechanical Strength and Thermal Properties of Cement Concrete Containing Waste Materials as Substitutes for Fine Aggregate.

Paweł ŁukowskiElżbieta HorszczarukCyprian SeulJarosław Strzałkowski
Published in: Materials (Basel, Switzerland) (2022)
The increasing volume of waste and the requirements of sustainable development are the reasons for the research on new waste management concepts. The research results presented in this paper show the effect of recycled aggregate on the selected properties of cement concrete. The aggregates obtained from three types of wastes are tested: recycled concrete paving, crushed ceramic bricks, and burnt sewage sludges. The recycled aggregates replaced 25% and 50% of the volume of the fine aggregate. The tested aggregates worsen the concrete mixes' consistency and decrease, to some extent, the compressive strength of the concrete. However, the tensile splitting strength of the concrete with recycled aggregates is similar to that of the reference concrete. Using recycled aggregates worsens the tightness of the concrete, which manifests itself by increasing water penetration depth. The thermal properties of concrete are slightly affected by the type and content of the recycled aggregate. Considering the expected improvement in recycled aggregate processing, they can be an alternative to natural aggregates. Using recycled aggregates in cement concrete requires extensive studies to search for ways to increase their possible content without worsening concrete performance.
Keyphrases
  • air pollution
  • municipal solid waste
  • wastewater treatment
  • life cycle