Login / Signup

The deleterious effects of acute hypoxia on microvascular and large vessel endothelial function.

Danial T JonesJamie H MacdonaldAamer SandooSamuel J OliverGabriella M K Rossetti
Published in: Experimental physiology (2021)
Hypoxia is associated with diminished bioavailability of the endothelium-derived vasodilator, nitric oxide (NO). Diminished NO bioavailability can have deleterious effects on endothelial function. The endothelium is a heterogeneous tissue; therefore, a comprehensive assessment of endothelial function is crucial to understand the significance of hypoxia-induced endothelial dysfunction. We hypothesized that acute hypoxia would have a deleterious effect on microvascular and large vessel endothelial function. Twenty-nine healthy adults [24 (SD = 4 ) years of age] completed normoxic and hypoxic [inspired O2  fraction = 0.209] trials in this double-blinded, counterbalanced crossover study. After 30 min, we assessed the laser Doppler imaging-determined perfusion response to iontophoresis of ACh as a measure of endothelium-dependent microvascular function and iontophoresis of sodium nitroprusside as a measure of endothelium-independent microvascular function. After 60 min, we assessed brachial flow-mediated dilatation as a measure of large vessel endothelial function. Thirty minutes of hypoxia reduced endothelium-dependent microvascular function determined by the perfusion response to ACh (median difference (x̃∆) = -109% {interquartile range: 542.7}, P < 0.05), but not endothelium-independent microvascular function determined by the perfusion response to sodium nitroprusside (x̃∆ = 69% {interquartile range: 453.7}, P = 0.6). In addition, 60 min of hypoxia reduced allometrically scaled flow-mediated dilatation compared with normoxia ( x ¯ Δ = - 1.19 [95% CI = -1.80, -0.58 (Confidence Intervals)]%, P < 0.001). The decrease in microvascular endothelial function was associated with cardiorespiratory fitness (r  = 0.45, P = 0.02). In conclusion, acute exposure to normobaric hypoxia significantly reduced endothelium-dependent vasodilatory capacity in small and large vessels. Collectively, these findings highlight the sensitivity of the microvascular circulation to hypoxic insult, particularly in those with poor cardiorespiratory fitness.
Keyphrases