Login / Signup

Even a little delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics.

Daniel BalzerIvan Kassal
Published in: Science advances (2022)
In organic photovoltaics, charges can separate efficiently even if their Coulomb attraction is an order of magnitude greater than the available thermal energy. Delocalization has been suggested to explain this fact, because it could increase the initial separation of charges in the charge-transfer (CT) state, reducing their attraction. However, understanding the mechanism requires a kinetic model of delocalized charge separation, which has proven difficult because it involves tracking the correlated quantum-mechanical motion of the electron and the hole in large simulation boxes required for disordered materials. Here, we report the first three-dimensional simulations of charge-separation dynamics in the presence of disorder, delocalization, and polaron formation, finding that even slight delocalization, across less than two molecules, can substantially enhance the charge-separation efficiency, even starting with thermalized CT states. Delocalization does not enhance efficiency by reducing the Coulomb attraction; instead, the enhancement is a kinetic effect produced by the increased overlap of electronic states.
Keyphrases