Login / Signup

Release and Gas-Particle Partitioning Behaviors of Short-Chain Chlorinated Paraffins (SCCPs) During the Thermal Treatment of Polyvinyl Chloride Flooring.

Faqiang ZhanHaijun ZhangJing WangJiazhi XuHeping YuanYuan GaoFan SuJiping Chen
Published in: Environmental science & technology (2017)
Chlorinated paraffin (CP) mixture is a common additive in polyvinyl chloride (PVC) products as a plasticizer and flame retardant. During the PVC plastic life cycle, intentional or incidental thermal processes inevitably cause an abrupt release of short-chain CPs (SCCPs). In this study, the thermal processing of PVC plastics was simulated by heating PVC flooring at 100-200 °C in a chamber. The 1 h thermal treatment caused the release of 1.9-10.7% of the embedded SCCPs. A developed emission model indicated that SCCP release was mainly controlled by material-gas partitioning at 100 °C. However, release control tended to be subjected to material-phase diffusion above 150 °C, especially for SCCP congeners with shorter carbon-chain lengths. A cascade impactor (NanoMoudi) was used to collect particles of different sizes and gas-phase SCCPs. The elevated temperature resulted in a higher partition of SCCPs from the gas-phase to particle-phase. SCCPs were not strongly inclined to form aerosol particles by nucleation, and less present in the Aitken mode particles. Junge-Pankow adsorption model well fitted the partitioning of SCCPs between the gas-phase and accumulation mode particles. Inhalation exposure estimation indicated that PVC processing and recycling workers could face a considerably high risk for exposure to SCCPs.
Keyphrases
  • life cycle
  • carbon dioxide
  • smoking cessation