Diffusion tensor imaging versus intraoperative subcortical mapping for glioma resection: a systematic review and meta-analysis.
Yiming LiJiahe GuoKai ZhangHuijie WeiJikang FanShengping YuTao LiXue-Jun YangPublished in: Neurosurgical review (2023)
Maintaining the integrity of crucial fiber tracts allows functional preservation and improved recovery in patients with glioma resection. Diffusion tensor imaging (DTI) and intraoperative subcortical mapping (ISM) are commonly required for pre- and intraoperative assessment of white matter fibers. This study investigated differences of clinical outcomes in glioma resection aided by DTI or ISM. A comprehensive literature retrieval of the PubMed and Embase databases identified several DTI or ISM studies in 2000-2022. Clinical data, including extent of resection (EOR) and postoperative neurological deficits, was collected and statistically analyzed. Heterogeneity was regressed by a random effect model and the Mann-Whitney U test was used to test statistical significance. Publication bias was assessed by Egger test. A total of 14 studies with a pooled cohort of 1837 patients were included. Patients undergoing DTI-navigated glioma surgery showed a higher rate of gross total resection (GTR) than ISM-assisted surgical resection (67.88%, [95% CI 0.55-0.79] vs. 45.73%, [95% CI 0.29-0.63], P = 0.032). The occurrence of early postoperative functional deficit (35.45%, [95% CI 0.13-0.61] vs. 35.60% [95% CI 0.20-0.53], P = 1.000), late postoperative functional deficit (6.00%, [95% CI 0.02-0.11] vs. 4.91% [95% CI 0.03-0.08], P = 1.000) and severe postoperative functional deficit (2.21%, [95% CI 0-0.08] vs. 5.93% [95% CI 0.01-0.16], P = 0.393) were similar between the DTI and ISM group, respectively. While DTI-navigation resulted in a higher rate of GTR, the occurrence of postoperative neurological deficits between DTI and ISM groups was comparable. Together, these data indicate that both techniques could safely facilitate glioma resection.
Keyphrases
- white matter
- patients undergoing
- multiple sclerosis
- risk assessment
- high resolution
- minimally invasive
- systematic review
- electronic health record
- coronary artery disease
- mass spectrometry
- patient reported outcomes
- deep learning
- subarachnoid hemorrhage
- high speed
- single molecule
- percutaneous coronary intervention
- double blind
- drug induced
- phase iii