Login / Signup

Quantitative System Modeling Bridges the Gap between Macro- and Microscopic Stomatal Model.

Mengmeng RuiYi JingHangjin JiangYizhou Wang
Published in: Advanced biology (2022)
An understanding of stomatal function is vital for the carbon and water cycle in nature. In the past decades, various stomatal models with different functions have been established to investigate and predict stomatal behavior and its association with plants' responses to the changing climate, but with limited biological information provided. On the other hand, many stomatal models at the molecular level focus on simulating and predicting molecular practices and ignore the dynamic quantitative information. As a result, stomatal models are often divided between the microscopic and macroscopic scales. Quantitative systems analysis offers an effective in silico approach to explore the link between microscopic gene function and macroscopic physiological traits. As a first step, a systems model, OnGuard, is developed for the investigation of guard cell ion homeostasis and its relevance to the dynamic stomatal movements. The system model has already yielded a series of important predictions to guide molecular physiological studies in stomata. It also exhibits great potential in breeding practice, which represents a key step toward "Breeding by design" of improving plant carbon-water use efficiency. Here, the development of stomatal models is reviewed, and the future perspectives on stomatal modeling for agricultural and ecological applications are discussed.
Keyphrases