Transient measurement of near-field thermal radiation between macroscopic objects.
Sen ZhangYongdi DangXinran LiYuxuan LiYi JinPankaj K ChoudhuryJianbing XuYungui MaPublished in: Nanoscale (2024)
The involvement of evanescent waves in the near-field regime could greatly enhance spontaneous thermal radiation, offering a unique opportunity to study nanoscale photon-phonon interaction. However, accurately characterizing this subtle phenomenon is very challenging. This paper proposes a transient all-optical method for rapidly characterizing near-field radiative heat transfer (NFRHT) between macroscopic objects, using the first law of thermodynamics. Significantly, a full measurement at a fixed gap distance is completed within tens of seconds. By simplifying the configuration, the transient all-optical method achieves high measurement accuracy and reliable reproducibility. The proposed method can effectively analyze the NFRHT in various material systems, including SiO 2 , SiC, and Si, which involve different phonon or plasmon polaritons. Experimental observations demonstrate significant super-Planckian radiation, which arises from the near-field coupling of bounded surface modes. Furthermore, the method achieves excellent agreement with theory, with a minimal discrepancy of less than 2.7% across a wide temperature range. This wireless method could accurately characterize the NFRHT for objects with different sizes or optical properties, enabling the exploration of both fundamental interests and practical applications.
Keyphrases