Login / Signup

Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch.

Quinn D GibsonTianqi ZhaoLuke M DanielsHelen C WalkerRamzy DaouSylvie HébertMarco ZanellaMatthew S DyerJohn B ClaridgeBen SlaterMichael W GaultoisFurio CoràJonathan AlariaMatthew J Rosseinsky
Published in: Science (New York, N.Y.) (2021)
The thermal conductivity of crystalline materials cannot be arbitrarily low, as the intrinsic limit depends on the phonon dispersion. We used complementary strategies to suppress the contribution of the longitudinal and transverse phonons to heat transport in layered materials that contain different types of intrinsic chemical interfaces. BiOCl and Bi2O2Se encapsulate these design principles for longitudinal and transverse modes, respectively, and the bulk superlattice material Bi4O4SeCl2 combines these effects by ordering both interface types within its unit cell to reach an extremely low thermal conductivity of 0.1 watts per kelvin per meter at room temperature along its stacking direction. This value comes within a factor of four of the thermal conductivity of air. We demonstrated that chemical control of the spatial arrangement of distinct interfaces can synergically modify vibrational modes to minimize thermal conductivity.
Keyphrases
  • room temperature
  • single cell
  • molecular dynamics simulations
  • heat stress
  • quantum dots
  • water soluble