Login / Signup

Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.

Poonam SundriyalShantanu Bhattacharya
Published in: ACS applied materials & interfaces (2017)
Printed electronics is widely gaining much attention for compact and high-performance energy-storage devices because of the advancement of flexible electronics. The development of a low-cost current collector, selection, and utilization of the proper material deposition tool and improvement of the device energy density are major challenges for the existing flexible supercapacitors. In this paper, we have reported an inkjet-printed solid-state asymmetric supercapacitor on commercial A4 paper using a low-cost desktop printer (EPSON L130). The physical properties of all inks have been carefully optimized so that the developed inks are within the printable range, i.e., Fromm number of 4 < Z < 14 for all inks. The paper substrate is made conducting (sheet resistance ∼ 1.6 Ω/sq) by printing 40 layers of conducting graphene oxide (GO) ink on its surface. The developed conducting patterns on paper are further printed with a GO-MnO2 nanocomposite ink to make a positive electrode, and another such structure is printed with activated carbon ink to form a negative electrode. A combination of both of these electrodes is outlaid by fabricating an asymmetric supercapacitor. The assembled asymmetric supercapacitor with poly(vinyl alcohol) (PVA)-LiCl gel electrolyte shows a stable potential window of 0-2.0 V and exhibits outstanding flexibility, good cyclic stability, high rate capability, and high energy density. The fabricated paper-substrate-based flexible asymmetric supercapacitor also displays an excellent electrochemical performances, e.g., a maximum areal capacitance of 1.586 F/cm2 (1023 F/g) at a current density of 4 mA/cm2, highest energy density of 22 mWh/cm3 at a power density of 0.099 W/cm3, a capacity retention of 89.6% even after 9000 charge-discharge cycles, and a low charge-transfer resistance of 2.3 Ω. So, utilization of inkjet printing for the development of paper-based flexible electronics has a strong potential for embedding into the next generation low-cost, compact, and wearable energy-storage devices and other printed electronic applications.
Keyphrases
  • solid state
  • low cost
  • gold nanoparticles
  • ionic liquid
  • heart rate
  • climate change
  • mass spectrometry
  • carbon nanotubes
  • wound healing
  • hyaluronic acid
  • label free