Concise, scalable and enantioselective total synthesis of prostaglandins.
Fuhao ZhangJingwen ZengMohan GaoLinzhou WangGen-Qiang ChenYixin LuXumu ZhangPublished in: Nature chemistry (2021)
Prostaglandins are among the most important natural isolates owing to their broad range of bioactivities and unique structures. However, current methods for the synthesis of prostaglandins suffer from low yields and lengthy steps. Here, we report a practicability-oriented synthetic strategy for the enantioselective and divergent synthesis of prostaglandins. In this approach, the multiply substituted five-membered rings in prostaglandins were constructed via the key enyne cycloisomerization with excellent selectivity (>20:1 d.r., 98% e.e.). The crucial chiral centre on the scaffold of the prostaglandins was installed using the asymmetric hydrogenation method (up to 98% yield and 98% e.e.). From our versatile common intermediates, a series of prostaglandins and related drugs could be produced in two steps, and fluprostenol could be prepared on a 20-gram scale.