Login / Signup

Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities.

Shun CheBosen JinZekun LiuYaochun YuJinyong LiuYujie Men
Published in: Environmental science & technology letters (2021)
Per- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic acids represent an important subgroup used as building blocks of biologically active chemicals and functional materials. Some are also considered PFAS alternatives, and some could be byproducts of the physicochemical treatment of PFAS. However, little is known about the environmental fate of short-chain fluorinated carboxylic acids (FCAs) and their defluorination/transformation by microorganisms. To fill the knowledge gap, we investigated the structure-reactivity relationships in the aerobic defluorination of C 3 -C 5 FCAs by activated sludge communities. Four structures exhibited greater than 20% defluorination, with 3,3,3-trifluoropropionic acid being almost completely defluorinated. We further analyzed the defluorination/transformation pathways and inferred the structures susceptible to aerobic microbial defluorination. We also demonstrated that the defluorination was via cometabolism. The findings advance the fundamental understanding of aerobic microbial defluorination and help assess the environmental fate of PFAS. Since some short-chain PFAS, such as 3,3,3-trifluoropropionic acid, are the incomplete defluorination byproducts of advanced reduction processes, their defluorination by activated sludge communities sheds light on the development of cost-effective chemical-biological PFAS treatment train systems.
Keyphrases
  • drinking water
  • high intensity
  • healthcare
  • microbial community
  • high resolution
  • clinical trial
  • mass spectrometry
  • risk assessment
  • open label