Login / Signup

L-Box Form Filling of Thixotropic Cementitious Paste and Mortar.

Mareike ThiedeitzNasime HabibThomas KraenkelChristoph Gehlen
Published in: Materials (Basel, Switzerland) (2020)
Rheological properties of cementitious pastes and mortar affect the casting, placement, and setting properties of fresh concrete. Fundamental rheological knowledge thus helps in predicting concrete flowability and workability. Empirical equations correlate actual rheological parameters based on physical material characteristics to workability tests. Still, these equations generally only take the dynamic yield stress of the material into account. This is not sufficient for thixotropic cementitious pastes or mortars, which possess structural buildup at rest. Workability predictions regarding the flow of concrete are thus more complicated with thixotropic materials. During form-filling in L-shaped formworks, the flow velocity of concrete slows down, wherefore rheological parameters change with time. At initial fast flow, high shear rates without structural buildup can be assumed. Dynamic yield stress and a steady state viscosity thus are proper parameters for empirical equations describing concrete flowability. During low shear rates, partial structural buildup takes place. Viscosity and yield stress increase due to agglomeration and affect the flowability of concrete tremendously. Rheological parameters of various cementitious pastes and mortars varying in their solid volume fraction and flowability were investigated in a vane-in-cup rheometer. The workability of the same mixtures was investigated by measuring the flow length in an L-shaped formwork. The effect of yield stress, viscosity, and thixotropic structural buildup on flow length was investigated. Subsequently correlations and discrepancies between flowability parameters and workability equations were analyzed.
Keyphrases
  • healthcare
  • atomic force microscopy
  • stress induced
  • physical activity
  • mental health
  • transcription factor
  • ionic liquid
  • mass spectrometry
  • binding protein
  • high resolution
  • blood flow
  • single molecule