Login / Signup

How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes.

Matthias M WaegeleCharuni M GunathungeJingyi LiXiang Li
Published in: The Journal of chemical physics (2019)
Electrocatalysis is central to the production of renewable fuels and high-value commodity chemicals. The electrolyte and the electrode together determine the catalytic properties of the liquid/solid interface. In particular, the cations of the electrolyte can greatly change the rates and reaction selectivity of many electrocatalytic processes. For this reason, the careful choice of the cation is an essential step in the design of catalytic interfaces with high selectivity for desired high-value products. To make such a judicious choice, it is critical to understand where in the electric double layer the cations reside and the various distinct mechanistic impacts they can have on the electrocatalytic process of interest. In this perspective, we review recent advances in the understanding of the electric double layer with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions. Furthermore, we summarize the different ways in which cations can alter the rates and selectivity of chemical processes at electrified interfaces and identify possible future areas of research in this field.
Keyphrases
  • ionic liquid
  • reduced graphene oxide
  • structural basis
  • gold nanoparticles
  • solid state