A Comparison of Postprandial Glucose Control in the Medtronic Advanced Hybrid Closed-Loop System Versus 670G.
Stuart A WeinzimerRyan J BaileyRichard M BergenstalRevital NimriRoy W BeckDesmond SchatzLouise Ambler-OsbornDarja Smigoc SchweigerThekla von dem BergeJudy SibayanMary L JohnsonPeter CalhounMoshe Phillipnull nullPublished in: Diabetes technology & therapeutics (2022)
Background: We recently reported that use of an "advanced" hybrid closed-loop system reduced hyperglycemia without increasing hypoglycemia compared to a first-generation system. The aim of this analysis was to evaluate whether this improved performance was specifically related to better mealtime glycemic control. Methods: We conducted a secondary analysis of postprandial glycemic control in an open-label, multinational, randomized crossover trial of 112 participants with type 1 diabetes, aged 14-29, of the Medtronic MiniMed™ 670G hybrid closed-loop system (670G) versus the Medtronic advanced hybrid closed-loop (AHCL) system, for 12 weeks each. We compared glycemic and insulin delivery metrics over a 3 h horizon across all meals to assess system performance and outcomes. Results: Overall meal size and premeal insulin on board were similar during run-in and between 670G and AHCL arms. Compared with 670G arm, premeal, peak, and mean glucose levels were numerically lower in the AHCL arm (167 ± 23, 231 ± 23, and 177 ± 20 mg/dL vs. 175 ± 23, 235 ± 23, and 180 ± 19 mg/dL, respectively), with a trend to lower hyperglycemia level 2 in AHCL arm. Adjusting for premeal glucose level, all postmeal outcomes between 670G and AHCL were statistically similar. Prandial insulin delivery also was similar in both treatment arms (21 ± 9 vs. 23 ± 10 U), with a shift in basal/bolus ratio from 28%/71% in 670G arm to 20%/80% in AHCL arm. Conclusions: Reduced hyperglycemia with AHCL compared to 670G was not related to early postprandial glycemic excursions after adjusting for premeal glucose level (<3 h after meal), but likely to later (>3 h) postprandial or overnight improvements. Further refinements to mealtime bolus algorithms and strategies may more optimally control prandial glycemic excursions.