Multi-Color Photoluminescence Based on Mechanically and Thermally Induced Liquid-Crystalline Phase Transitions of a Hydrogen-Bonded Benzodithiophene Derivative.
Atsushi SekiMasafumi YoshioPublished in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
Controlling assembled structures of π-conjugated liquid-crystalline molecules is of great interest in the development of stimuli-responsive luminescent materials due to their molecular motility in the ordered states. Herein, we describe a mechanoresponsive hydrogen-bonded benzodithiophene liquid-crystalline molecule that exhibits a tricolor photoluminescence switching at ambient temperature. The compound shows a shear-induced phase transition from a rectangular columnar to a metastable optically anisotropic mesophase, which is accompanied by the luminescent color change from yellow to sky-blue. The metastable mesophase exhibits a time-responsive transformation to another metastable mesophase showing a blue-green emission through isothermal aging at room temperature. The luminescent color of aged sample reverts back to the initial yellow color by thermal annealing at 150 °C. These dynamic structural changes accompanied by the emission color changes are governed by distinct π-stacking modes and hydrogen-bonded patterns. The shear-induced luminescent color change from yellow to blue is found to occur above the shear strain of 390 % at which the shear stress is 2.4×105 Pa as determined from dynamic viscoelastic measurements.