Comparative aspects of mast cell neoplasia in animals and the role of KIT in prognosis and treatment.
Vanessa S TamlinCynthia D K BottemaAnne E PeastonPublished in: Veterinary medicine and science (2019)
Mast cell neoplasia clinical presentation and biological behaviour vary considerably across mammalian species, ranging from a solitary benign mass to an aggressive systemic malignancy. Mutations in the KIT Proto-Oncogene Receptor Tyrosine Kinase (KIT) gene are common molecular abnormalities involved in mast cell tumorigenesis. KIT mutations often occur in dog, cat and human neoplastic mast cells and result in altered Kit protein structure and function. In dogs, certain KIT mutations are associated with more malignant and lethal disease. In contrast, KIT mutations in feline and human mast cell neoplasms are not correlated with prognosis, but are of value in diagnosis and treatment planning in humans. KIT genetic abnormalities have not been well investigated in other species, although aberrant cytoplasmic Kit protein staining detected in neoplasms of the ferret, horse and cow resembles aberrant Kit staining patterns detected in neoplastic mast cells of dogs, cats and humans. Mutations within KIT are classified as either regulatory-type or enzymatic pocket-type mutations according to their location within the KIT Proto-Oncogene. Mutations within the enzymatic pocket domain confer tumour resistance to tyrosine kinase inhibitors (TKIs). Hence, knowledge of tumour KIT mutation status adds valuable information for optimizing patient treatment strategies. The use of TKIs in combination with conventional chemotherapeutics has opened a new treatment avenue for patients unresponsive to existing drugs. This review highlights the similarities and differences of mast cell neoplasia in mammals with a special focus on the involvement of KIT in the canine and feline forms in comparison to human mast cell neoplasia.
Keyphrases
- endothelial cells
- tyrosine kinase
- healthcare
- magnetic resonance imaging
- epidermal growth factor receptor
- genome wide
- end stage renal disease
- small molecule
- copy number
- ejection fraction
- transcription factor
- chronic kidney disease
- case report
- newly diagnosed
- hydrogen peroxide
- nitric oxide
- protein protein
- patient reported