Login / Signup

Selective Crystallization of d-Mannitol Polymorphs Using Surfactant Self-Assembly.

Frederico Marques PenhaAshwin GopalanJochem Christoffel MeijlinkFatma IbisHuseyin Burak Eral
Published in: Crystal growth & design (2021)
Selective crystallization of polymorphs is highly sought after in industrial practice. Yet, state-of-the-art techniques either use laboriously engineered solid surfaces or strenuously prepared heteronucleants. We propose an approach where surfactants in solution self-assemble effortlessly into mesoscopic structures dictating the polymorphic outcome of the target solute. Sodium dodecyl sulfate (SDS) surfactant is used as a tailored additive to crystallize different polymorphic forms of a model active pharmaceutical ingredient, d-mannitol. Different mesoscopic phases of SDS template particular polymorphs: packed monolayers, micelles, and crystals favored the β, α, and δ forms of d-mannitol, respectively. A synergistic effect of topological templating and molecular interactions is proposed as the rationale behind the observed selective crystallization of polymorphs. This crystal engineering technique suggests that surfactant self-assemblies can be used as tailored templates for polymorphic control.
Keyphrases
  • healthcare
  • drug delivery
  • primary care
  • clinical trial
  • high resolution
  • pseudomonas aeruginosa
  • escherichia coli
  • room temperature
  • biofilm formation