Login / Signup

Development and Implementation of Atomically Anisotropic First-Principles Force Fields: A Benzene Case Study.

Tesia D JanickiMary J Van VleetJ R Schmidt
Published in: The journal of physical chemistry. A (2023)
π-interactions are an important motif in chemical and biochemical systems. However, due to their anisotropic electron densities and complex balance of intermolecular interactions, aromatic molecules represent an ongoing challenge for accurate and transferable force field development. Historically, ab initio force fields for aromatics have not exhibited good accuracy with respect to bulk properties or have only been used to study gas-phase dimers. Using benzene as a proof of concept, herein we show how our own ab initio MASTIFF force field incorporates an atomically anisotropic description of intermolecular interactions to yield an accurate and robust model for aromatic interactions irrespective of phase. Compared to existing models, the MASTIFF benzene force field not only is accurate for liquid phase properties but also offers transferability to the gas and solid phases. Additionally, we introduce a computationally efficient OpenMM plugin which enables customizable anisotropic intermolecular functional forms and which can be generically used in any MD simulation where a model for nonspherical atomic features is required. Overall, our results demonstrate the importance of atomic-level anisotropy in enabling next-generation ab initio force field development.
Keyphrases
  • single molecule
  • high resolution
  • healthcare
  • primary care
  • ionic liquid
  • finite element