Login / Signup

Light-Activated Active Colloid Ribbons.

Zhihua LinTieyan SiZhiguang WuChangyong GaoXiankun LinQiang He
Published in: Angewandte Chemie (International ed. in English) (2017)
We report a dynamic self-organization of self-propelled peanut-shaped hematite motors from non-equilibrium driving forces where the propulsion can be triggered by blue light. They result in one-dimensional, active colloid ribbons with a positive phototactic characteristic. The motion of colloid motors is ascribed to the diffusion-osmotic flow in a chemical gradient by the photocatalytic decomposition of hydrogen peroxide fuel. We show that self-propelled peanut-shaped colloids readily form one-dimensional, slithering ribbon structures under the out-of-equilibrium collisions. This self-organization intrinsically results from the competition among the osmotically driven motion, the phoretic attraction and the inherent magnetic moments. The giant size number fluctuation in colloid ribbons is observed above a critical point 4.1 % of the surface density of colloid motors. Such phototactic colloid ribbons may provide a model system to understand the emergence of function in biological systems and have potential to construct bioinspired active materials based on different active building blocks.
Keyphrases
  • hydrogen peroxide
  • nitric oxide
  • molecular dynamics
  • molecular dynamics simulations
  • high resolution
  • high speed
  • gold nanoparticles
  • rare case
  • reduced graphene oxide
  • liquid chromatography
  • visible light