Login / Signup

Simultaneous Monitoring of the Adenosine Triphosphate Levels in the Cytoplasm and Nucleus of a Single Cell with a Single Nanowire-Based Fluorescent Biosensor.

Mingliang MeiLixuan MuYuan WangSen LiangQiaowen ZhaoLushan HuangGuangwei SheWensheng Shi
Published in: Analytical chemistry (2022)
Simultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells. Observing the ATP fluctuation of the cytoplasm and nucleus of the L929 and HeLa cells stimulated by Ca 2+ , oligomycin, or under cisplatin-induced apoptosis, we found that the ATP levels at two cellular sites exhibited discriminative changes, revealing the different mechanisms of the ATP at these two cellular sites in response to the stimulations.
Keyphrases