Login / Signup

Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation.

Adrián López-QuirósCarlota EscutiaAntonio Sánchez-NavasFernando NietoAntonio Garcia-CascoAgustín Martín-AlgarraDimitris EvangelinosAriadna Salabarnada
Published in: Scientific reports (2019)
Three types of glaucony grains were identified in the late Eocene (~35.5-34.1 Ma) sediments from Ocean Drilling Program (ODP) Hole 696B in the northwestern Weddell Sea (Antarctica). The grains are K2O-rich (~7 wt%) and formed by smectite-poor interstratified ~10 Å glauconite-smectite with flaky/rosette-shaped surface nanostructures. Two glaucony types reflect an evolved (types 1 and 2 glaucony; less mature to mature) stage and long term glauconitization, attesting to the glaucony grains being formed in situ, whereas the third type (type 3 glaucony) shows evidences of alteration and reworking from nearby areas. Conditions for the glaucony authigenesis occurred in an open-shelf environment deeper than 50 m, under sub-oxic conditions near the sediment-water interface. These environmental conditions were triggered by low sedimentation rates and recurrent winnowing action by bottom-currents, leading to stratigraphic condensation. The condensed glaucony-bearing section provides an overview of continuous sea-level rise conditions pre-dating the onset of Antarctic glaciation during the Eocene-Oligocene transition. Sediment burial, drop of O2 levels, and ongoing reducing (postoxic to sulphidic) conditions at Hole 696B, resulting in iron-sulphide precipitation, were a key limiting factor for the glauconitization by sequestration of Fe2+.
Keyphrases
  • heavy metals
  • polycyclic aromatic hydrocarbons
  • risk assessment
  • metal organic framework