Login / Signup

Diversified Phenomena in Metal- and Transition-Metal-Adsorbed Graphene Nanoribbons.

Shih-Yang LinNgoc Thanh Thuy TranMing-Fa Lin
Published in: Nanomaterials (Basel, Switzerland) (2021)
Adatom-adsorbed graphene nanoribbons (GNRs) have gained much attention owing to the tunable electronic and magnetic properties. The metal (Bi, Al)/transition metal (Ti, Fe, Co, Ni) atoms could provide various outermost orbitals for the multi-orbital hybridizations with the out-of-plane π bondings on the carbon honeycomb lattice, which dominate the fundamental properties of chemisorption systems. In this study, the significant similarities and differences among Bi-/Al-/Ti-/Fe-/Co-/Ni-adsorbed GNRs are thoroughly investigated by using the first-principles calculations. The main characterizations include the adsorption sites, bond lengths, stability, band structures, charge density distributions, spin- and orbital-projected density of states, and magnetic configurations. Furthermore, there exists a transformation from finite gap semiconducting to metallic behaviors, accompanied by the nonmagnetism, antiferromagnetism, or ferromagnetism. They arise from the cooperative or competitive relations among the significant chemical bonds, finite-size quantum confinement, edge structure, and spin-dependent many-body effects. The proposed theoretical framework could be further improved and generalized to explore other emergent 1D and 2D materials.
Keyphrases