Login / Signup

Fixed-point "blasting" triggered by second near-infrared window light for augmented interventional photothermal therapy.

Yongbin CaoBoshu OuyangXiaowei YangQin JiangLin YuShun ShenJiandong DingWuli Yang
Published in: Biomaterials science (2021)
One of the major limitations of current cancer therapy is the inability to destroy tumors with high efficacy and minimal invasiveness. Herein, we developed a proof-of-concept fixed-point "blasting" strategy to destroy the "castle" of tumors and realized efficient interventional photothermal therapy. The "blasting" materials were composed of photothermal nanoparticles (ancient ink nanoparticles, AINP) and a low boiling point phase change agent (perfluoromethylcyclopentane, FMCP). An injectable in situ-forming thermal-responsive hydrogel composed of biodegradable and biocompatible polymers was employed as a carrier to load the AINP and FMCP. The obtained hydrogel system was a flowable aqueous solution at low or room temperature for facile injection; meanwhile, once administered, it rapidly transformed into a fixed gel at a body temperature of about 37 °C. This unique property could effectually fix the AINP and FMCP and thus restrict the destruction region inside the tumor. Subsequently, triggered by second window near-infrared light, the solid tumors were effectively destroyed by a mild photothermal effect and the subsequent gas mechanical damage. We envisage that this fixed-point "blasting" strategy will pave a new way for the next generation of cancer-interventional photothermal therapy.
Keyphrases