Login / Signup

Effect of Trehalose Supplementation in Egg-Yolk-Free Extender on Conventional Parameters and Gene Expression Related to Reactive Oxygen Species, Apoptosis, and Motility of Frozen Dog Spermatozoa.

Saddah IbrahimSangmin ShinNabeel Abdelbagi Hamad TalhaYubyeol Jeon
Published in: Biopreservation and biobanking (2024)
The present study was conducted to evaluate the effects of trehalose supplementation in egg-yolk (EY)-free tris extender on dog spermatozoa. Pooled spermatozoa were diluted with extender 1 (EY-free tris extender supplemented with 0, 10, 15, 20, or 30 mM trehalose) and cooled (2 × 10 8 sperm/mL) for 1 hour at 4°C. After that, extender 2 (extender 1 containing 1 M glycerol) was added (v:v) to the diluted sperm, loaded in 0.5-mL straws (1 × 10 8 sperm/mL), and incubated at 4°C for 30 minutes. The sperm straws were frozen over liquid nitrogen (LN 2 ) vapor for 20 minutes and then plunged directly into LN 2 . After thawing at 37°C for 25 seconds, sperm progressive motility (CASA), viability (SYBR-14/PI), apoptosis (Annexin V/PI), and reactive oxygen species (ROS; H 2 DCFDA/PI) were evaluated. Thereafter, the optimal concentrations of trehalose were selected, and the gene expression of BAX , BCL2 , NOX5 , SMOX , OGG1 , and ROMO1 was evaluated after freeze-thawing. Supplementation with 20 and 30 mM trehalose significantly increased sperm progressive motility and viability compared to the control. However, trehalose had no significant effect on sperm ROS or phosphatidylserine translocation index. There were minor numerical increases and decreases in gene expression when the selected optimal concentrations of trehalose (20 and 30 mM) were compared to the control. However, there were no significant differences. We conclude that the addition of trehalose (20 and 30 mM) in EY-free extender could improve sperm motility and viability without significant effects on ROS, apoptosis, or gene expression.
Keyphrases