Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere.
Kana JitsunoTatsuhiko HoshinoYohei NishikawaMasato KogawaKatsuhiko MinetaMichael StrasserKen IkeharaJeremy EverestLena MaedaFumio InagakiHaruko Takeyamanull nullPublished in: mSphere (2024)
Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth's carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445-8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere.IMPORTANCEThe Japan Trench represents tectonically active hadal environments associated with Pacific plate subduction beneath the northeastern Japan arc. This study, for the first time, documented a large-scale single-cell and metagenomic survey along an approximately 500 km transect of the Japan Trench, obtaining high-quality genomic information on hadal sedimentary microbial communities. Single-cell genomics revealed the predominance of diverse JS1 lineages not recoverable through conventional metagenomic binning. Their metabolic potential includes genes related to the degradation of organic matter, which contributes to methanogenesis in the deeper layers. Our findings enhance understanding of sedimentary microbial communities at water depths exceeding 7,000 m and provide new insights into the ecological role of biogeochemical carbon cycling in the hadal sedimentary biosphere.
Keyphrases
- single cell
- rna seq
- high throughput
- organic matter
- heavy metals
- genome wide
- risk assessment
- climate change
- copy number
- polycyclic aromatic hydrocarbons
- small molecule
- quality improvement
- optical coherence tomography
- transcription factor
- deep learning
- antibiotic resistance genes
- wastewater treatment
- genome wide identification