Login / Signup

Enhancing Zinc Electrode Stability Through Pre-Desolvation and Accelerated Charge Transfer via a Polyimide Interface for Zinc-Ion Batteries.

Chi-Yu LaiYin-Song LiaoHao-Yu KuWen-Yang JaoSanna GullHan-Yi ChenJyh-Ping ChouChi-Chang Hu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H 2 O) 6 2+ to Zn(H 2 O) 4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H 2 O) 4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol -1 . The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm -2 , 10 mAh cm -2 ) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.
Keyphrases
  • oxide nanoparticles
  • heavy metals
  • single cell
  • gene expression
  • risk assessment
  • cell therapy
  • induced apoptosis
  • signaling pathway
  • bone marrow
  • genome wide
  • endoplasmic reticulum stress