Self-Deicing Electrolyte Hydrogel Surfaces with Pa-level Ice Adhesion and Durable Antifreezing/Antifrost Performance.
Tong LiPablo F Ibáñez-IbáñezVerner HåkonsenJianyang WuKe XuYizhi ZhuoSihai LuoJianying HeZhiliang ZhangPublished in: ACS applied materials & interfaces (2020)
Despite the remarkable advances in mitigating ice formation and accretion, however, no engineered anti-icing surfaces today can durably prevent frost formation, droplet freezing, and ice accretion in an economical and ecofriendly way. Herein, sustainable and low-cost electrolyte hydrogel (EH) surfaces are developed by infusing salted water into a hydrogel matrix for avoiding icing. The EH surfaces can both prevent ice/frost formation for an extremely long time and reduce ice adhesion strength to ultralow value (Pa-level) at a tunable temperature window down to -48.4 °C. Furthermore, ice can self-remove from the tilted EH surface within 10 s at -10 °C by self-gravity. As demonstrated by both molecular dynamic simulations and experiments, these extreme performances are attributed to the diffusion of ions to the interface between EH and ice. The sustainable anti-icing properties of EH can be maintained by replenishing in real-time with available ion sources, indicating the promising applications in offshore platforms and ships.