Login / Signup

An Updated Review of Salivary pH Effects on Polymethyl Methacrylate (PMMA)-Based Removable Dental Prostheses.

Faris A AlshahraniFatemah AlToraibilyMaryam Ahmed AlzaidAmr A MahrousMaram A AlGhamdiMohammed M Gad
Published in: Polymers (2022)
Salivary pH is a neglected factor that may affect the performance of removable dental prostheses (RDP). This study aimed to review literature in reference to the role of salivary pH on the performance of RDP and materials used for their fabrication. From January 1990 until December 2021, a search was done on PubMed, Scopus, and Web of Science databases using removable dental prostheses, salivary pH, PMMA, Denture base, and physical properties as keywords. Articles that met the inclusion criteria (full-length articles have investigated the effect of salivary pH on RDP materials in vitro and in vivo) were included. Out of 433 articles, 8 articles that met the inclusion criteria were included. All studies used artificial saliva with different salivary pH ranging between 3 and 14. Two articles investigated the role of salivary pH on the cytotoxicity of denture base resins and soft liner. One article studied the durability and retention of attachments, one article analyzed the performance of PEEK materials, one article researched the fatigue resistance of a denture base, one article investigated the corrosion of RPD framework cast and milled Co-Cr, one article studied the strength and clasp retention and deformation of acetal and PEEK materials, and one evaluated changes in mass and surface morphology of CAD-CAM fiber-reinforced composites for the prosthetic framework. Different salivary pH affected all included materials in this review except PEEK materials. The most adverse effect was reported with alkaline and acidic; however, the acidic showed the most deterioration effect. Salivary pH has a role in the selection of material used for RDP fabrication.
Keyphrases
  • systematic review
  • mental health
  • oral health
  • emergency department
  • machine learning
  • tyrosine kinase
  • atomic force microscopy
  • drug induced
  • artificial intelligence
  • tissue engineering
  • solid state