Login / Signup

Pressure-Sensitive Tissue Adhesion and Biodegradation of Viscoelastic Polymer Blends.

John L DaristotleShadden T ZakiLung W LauOmar B AyyubMassi DjouiniPriya SrinivasanMetecan ErdiAnthony D SandlerPeter Kofinas
Published in: ACS applied materials & interfaces (2020)
Viscoelastic blends of biodegradable polyesters with low and high molecular weight distributions have remarkably strong adhesion (significantly greater than 1 N/cm2) to soft, wet tissue. Those that transition from viscous flow to elastic, solidlike behavior at approximately 1 Hz demonstrate pressure-sensitivity yet also have sufficient elasticity for durable bonding to soft, wet tissue. The pressure-sensitive tissue adhesive (PSTA) blends produce increasingly stronger pull-apart adhesion in response to compressive pressure application, from 10 to 300 s. By incorporating a stiffer high molecular weight component, the PSTA exhibits dramatically improved burst pressure (greater than 100 kPa) when used as a tissue sealant. The PSTA's biodegradation mechanism can be switched from erosion (occurring primarily over the first 10 days) to bulk chemical degradation (and minimal erosion) depending on the chemistry of the high molecular weight component. Interestingly, fibrosis toward the PSTA is reduced when fast-occurring erosion is the dominant biodegradation mechanism.
Keyphrases
  • biofilm formation
  • drug delivery
  • high frequency
  • staphylococcus aureus
  • atomic force microscopy
  • pseudomonas aeruginosa
  • cystic fibrosis
  • cell migration