Login / Signup

Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.

Sandipan ChakrabortyBiman Jana
Published in: Physical chemistry chemical physics : PCCP (2019)
The ice/water interface recognition mechanism of antifreeze proteins (AFPs) is highly contentious. Conventionally, protein adsorption on a solid surface is primarily driven by the polar interactions between the hydrophilic residues of the protein and interfacial water of the solid surface. Ice surface recognition by a type III AFP is surprising in this context where the ice binding surface (IBS) is hydrophobic. The present study provides molecular insight into the unusual interface recognition phenomenon of a type III AFP (QAE isoform) from Macrozoarces americanus. Potential of mean force calculations show that the type III AFP adsorbs on the ice surface mediated through a layer of ordered water. Molecular dynamics simulations at lower than ambient temperature reveal that the flat hydrophobic IBS induces ordering of water. The excellent geometrical synergy between the hydration water structure around the IBS and water arrangements on the pyramidal surface favours adsorption on the pyramidal plane. Mutations that interrupt the hydration shell water ordering essentially lead to less efficient adsorption, which greatly reduces the anti-freezing activity of the AFP. Binding free energy calculations of the wild-type and several mutant AFPs reveal that the binding affinity is linearly correlated with the experimentally observed thermal hysteresis activity. Therefore, binding to a specific ice plane with considerable affinity is the dictating factor of the anti-freeze activity for a type III AFP. Mechanistic insights into the ice binding process of the wild-type and different mutant AFPs obtained from this study pave the way for rational design of type III variants with much improved activity, which possesses ample industrial applicability, particularly in cryo-preservation.
Keyphrases