Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types.
Joshua Yi YeoDarius Wen-Shuo KohPing YapGhin-Ray GohSamuel Ken-En GanPublished in: International journal of molecular sciences (2020)
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Keyphrases
- antiretroviral therapy
- hiv positive
- hiv infected
- hiv testing
- human immunodeficiency virus
- hepatitis c virus
- drug resistant
- hiv aids
- men who have sex with men
- genome wide
- amino acid
- gene expression
- emergency department
- genome wide identification
- south africa
- mass spectrometry
- cystic fibrosis
- high speed
- genome wide analysis
- drug induced
- molecular dynamics
- liquid chromatography
- dna methylation
- electronic health record
- tandem mass spectrometry