Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol.
Mei-Tsan KuoJie-Ning YangJim Jr-Min LinKaito TakahashiPublished in: The journal of physical chemistry. A (2021)
Via intramolecular H atom transfer, 3-aminopropanol is more reactive toward Criegee intermediates, in comparison with amines or alcohols. Here we accessed the substituent effect of Criegee intermediates in their reactions with 3-aminopropanol. Through real-time monitoring the concentrations of two Criegee intermediates with their strong UV absorption at 340 nm, the experimental rate coefficients at 298 K (100-300 Torr) were determined to be (1.52 ± 0.08) × 10-11 and (1.44 ± 0.22) × 10-13 cm3 s-1 for the reactions of 3-aminopropanol with (CH3)2COO (acetone oxide) and CH2CHC(CH3)OO (methyl vinyl ketone oxide), respectively. Compared to our previous experimental value for the reaction with syn-CH3CHOO, (1.24 ± 0.13) × 10-11 cm3 s-1, we can see that the methyl substitution at the anti position has little effect on the reactivity while the vinyl substitution causes a drastic decrease in the reactivity. Our theoretical calculations based on CCSD(T)-F12 energies reproduce this 2-order-of-magnitude decrease in the rate coefficient caused by the vinyl substitution. Using the activation strain model, we found that the interaction of Criegee intermediates with 3-aminopropanol is weaker for the case of vinyl substitution. This effect can be further rationalized by the delocalization of the lowest unoccupied molecular orbital for the vinyl-substituted Criegee intermediates. These results would help us better estimate the impact of similar reactions like the reactions of Criegee intermediates with water vapor, some of which could be difficult to measure experimentally but can be important in the atmosphere. We also found that the B2PLYP-D3BJ/aug-cc-pVTZ calculation can reproduce the CCSD(T)-F12 reaction barrier energies within ca. 1 kcal mol-1, indicating that the use of the B2PLYP-D3BJ method is promising for future predictions of the reactions of larger Criegee intermediates.