The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol g cat -1 h -1 ) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.