Login / Signup

Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions.

Somdeb JanaYajnaseni BiswasMd AnasAnupam SahaTarun Kumar Mandal
Published in: Langmuir : the ACS journal of surfaces and colloids (2018)
The synthesis of a series of dual thermosensitive nonionic-ionic random copolymers with varying compositions by reversible addition-fragmentation chain transfer polymerization is described. These copolymers contain oligo(2-ethyl-2-oxazoline)acrylate (OEtOxA) and either triphenyl-4-vinylbenzylphosphonium chloride ([VBTP][Cl]) or 3- n-butyl-1-vinylimidazolium bromide ([VBuIm][Br]) ionic liquid (IL) units. The copolymers having low content of ionic poly(ionic liquid) (PIL) (P[VBTP][Cl]/P[VBuIm][Br]) segments show only lower critical solution temperature (LCST)-type phase transition with almost linear increase of their cloud points with increasing percentage of ionic PIL segments. Furthermore, LCST-type cloud points ( TcLs) are found very sensitive and tunable with respect to the nature and concentration of halide ions (X- = Cl-, Br-, and I-) and copolymer compositions. However, copolymers with high content of ionic PIL segments show both LCST-type followed by upper critical solution temperature (UCST)-type phase transitions in the presence of halide ions. Dual LCST- and UCST-type phase behaviors are prominent and repeatable for many heating/cooling cycles. Both types of cloud points are found to be sensitive to copolymer compositions, concentration, and nature and concentration of the halide ions. The phase behaviors of both types of copolymers with a very high ionic content (>90%) are exactly similar to that of P[VBTP][Cl] or P[VBuIm][Br] homopolymers showing only UCST-type phase transition in the presence of halide ions. The inherent biocompatibility of the P(OEtOxA) segment along with the interesting dual thermoresponsiveness makes these copolymers highly suitable candidates for biomedical applications including drug delivery.
Keyphrases
  • ionic liquid
  • room temperature
  • drug delivery
  • quantum dots
  • neural network
  • solar cells