Regulation of chemoconvulsant-induced seizures by store-operated Orai1 channels.
Kotaro HoriShogo TsujikawaMichaela M NovakovicMegumi YamashitaMurali PrakriyaPublished in: The Journal of physiology (2020)
Store-operated Orai1 channels are a major mechanism for Ca2+ entry in many cells and mediate numerous functions including gene expression, cytokine production and gliotransmitter release. Orai1 is expressed in many regions of the mammalian brain; however, its role in regulating neuronal excitability, synaptic function and brain disorders has only now begun to be investigated. To investigate a potential role of Orai1 channels in status epilepticus induced by chemoconvulsants, we examined acute seizures evoked by intraperitoneal injections of kainic acid (KA) and pilocarpine in mice with a conditional deletion of Orai1 (or its activator STIM1) in the brain. Brain-specific Orai1 and STIM1 knockout (KO) mice exhibited significantly stronger seizures (P = 0.00003 and P < 0.00001), and higher chemoconvulsant-induced mortality (P = 0.02) compared with wildtype (WT) littermates. Electrophysiological recordings in hippocampal brain slices revealed that KA stimulated the activity of inhibitory interneurons in the CA1 hippocampus (P = 0.04) which failed to occur in Orai1 KO mice. Further, KA and pilocarpine increased the frequency of spontaneous IPSCs in CA1 pyramidal neurons >twofold (KA: P = 0.04; pilocarpine: P = 0.0002) which was abolished in Orai1 KO mice. Mice with selective deletion of Orai1 in GABAergic neurons alone also showed stronger seizures to KA (P = 0.001) and pilocarpine (P < 0.00001) and loss of chemoconvulsant-induced increases in sIPSC responses compared with WT controls. We conclude that Orai1 channels regulate chemoconvulsant-induced excitation in GABAergic neurons and that destabilization of the excitatory/inhibitory balance in Orai1 KO mice aggravates chemoconvulsant-mediated seizures. These results identify Orai1 channels as novel molecular regulators of hippocampal neuronal excitability and seizures.
Keyphrases
- cerebral ischemia
- high fat diet induced
- white matter
- gene expression
- high glucose
- resting state
- diabetic rats
- temporal lobe epilepsy
- drug induced
- functional connectivity
- subarachnoid hemorrhage
- insulin resistance
- cardiovascular disease
- endothelial cells
- risk factors
- multiple sclerosis
- blood brain barrier
- spinal cord injury
- type diabetes
- immune response
- wild type
- transcription factor
- metabolic syndrome
- liver failure
- mass spectrometry
- brain injury
- stress induced
- toll like receptor
- energy transfer